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ABSTRACT

Conservative human inference has been attributed to misper-
ception or misaggregation of data, but it may be caused by response
biases. In the present experiments subjects revised odds estimates
about which of two normal distribution data generators were being
sampled. An analysis of special sequences and a plot of revised
odds against theoretical odds in Experiment I showed a bias in
subjects' response functions. They revised odds optimally only over
a range of + 1.0 log odds. When the experimenter set different levels
of prior odds, subjects shifted their response functions so that the
optimal range centered around the set prior odds. A second experiment
showed that the biased functions remained invariate over changes in data
generator familiarity and diagnosticity. Subjects were biased over either
cunmulative evidence impact or the number system, but within their optimal

range they neither misaggregated nor misperceived data.
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INTRODUCTION

Of the many kinds of errors men are known to make, one
particular kind has been the focus of a considerable number of ex-
periments in the field of decision theory. The error shows up when
human opinion revisions are compared to the revisions of the optimal
model, Bayes's theorem. The comparison typically shows that humans
are conservative, they do not revise their opinions, or probabilities,
sufficiently in the light of new information. They change in the right
direction, but not enough.

The fact that people revise probabilities in a conservative
fashion is of much interest on both theoretical and practical grounds.
Theoretically there are two basic questions a person must answer when
making any decision; ''what's at stake?'" and "what are the odds?" In
many decision situations the probabilities, or odds, over the various
states of the world change as new information comes in. If people cannot
accurately keep up with these changes, they will make suboptimal decisions.
In practical applications of decision theoretic techniques it has been
suggested that men should provide the probabilistic inputs to real world
diagnostic systems, e.g., military intelligence systems. But if men's
probability revisions are in error, the system may arrive at faulty
diagnoses. For these reasons much attention has been directed towards

determining the nature of, and causes for, conservative human inference.




Previous Explanations of Conservatism

Of the several explanations of conservatism which have been
put forward (for a review see Du Charme, 1969), two have received the
most attention. Edwards (1968) has discussed the evidence for these
two explanations called misaggregation, and misperception, and some
of this presentation will be drawn from Edwards' paper. A brief look
at Bayes's theorem will make the discussion somewhat easier to follow.
The theorem states that the probability P of a hypothesis H given the

occurrence of a datum D is

P(H|D) = P(D|H) P(H) . (1)

P(D)

If we have two mutually exclusive hypotheses H. and HZ’ and we write out

1

Equation 1 for each hypothesis and then divide one equation by the other the

result is:

P(H,[D) = P(D|H)) P(H)) (2)
P(HZ{D) P(D]HZ) P(H,)
Equation 2 can be rewritten as
Ql = L QO (3
where the prior odds QO are equal to P(Hl), the likelihood ratio L is equal
P(Hz)

to P(D}Hl) and the posterior odds Ql are equal to P(HlID)

P(D H2) P(H2 D)

In typical probability revision experiments the two hypotheses are binomial

populations, and the data consist of binomial events drawn from one or the




other of the populations.

Both the misperception and the misaggregation hypotheses assume that
people deviate from the Bayesian model for opinion revision. The misperception
hypothesis says that people always fail to use the correct likelihood ratio
(L in Equation 3) when they revise their odds or probabilities. They mis-
perceive the diagnostic impact of the datum they are processing. The
hypothesis further asserts that these incorrect likelihood ratios are always
properly combined or aggregated, i.e., multiplied by the prior odds according
to Bayes's theorem. The misaggregation hypothesis asserts just the opposite.
It states that people perceive diagnostic impact accurately, the likelihood
ratios they use are correct, but that they always fail to properly combine
the likelihood ratios with the prior odds. They never aggregate the data
and the prior odds according to Bayes's theorem, i.e., multiplicatively.
Although these two hypotheses about the cause of conservatism are quite
different, it may be, as Edwards (1968) suggests, that both are true. Subjects
may both misperceive and misaggregate data. What does the evidence show?

Beach has championed the misperception cause and carried out several
experiments testing it. He and others have found a variety of evidence
supporting the hypothesis including successful checks of the internal con-
sistency of revised probabilities (Beach, 1966; Peterson, Ulehla, Miller,
Bourne & Stilson, 1965); demonstrations that subjective sampling distributions
are too flat as predicted by the hypothesis (Peterson, Du Charme & Edwards,
1968; Vlek & Beintema, 1967; Vlek & Van der Heijden, 1967; Wheeler & Beach,
1968); and data which show that the accuracy of Ss' probability revisions
increases as their sampling distributions become more accurate (Wheeler &

Beach, 1968).
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Unfortunately, most of these supporting data can be criticized
(as Edwards, 1968 has done) on the grounds that the Ss were dealing with
already aggregated samples. For example the experiments generally show
that given the Ss' P(D|H) estimates his P(H|D) estimates are those
predicted by Bayes's theorem; he correctly aggregates his erroneous
likelihood ratios. But the experimenters typically gather P(D‘H)
estimates for already aggregated samples, e.g., P(Dl, D2, D3IH) rather
than for individual data, e.g., P(D;|H), P(D,|H), P(D3}H). Thus what the
experiments really show, according to Edwards, is that equal amounts of
conservatism exist in the two kinds of aggregation, P(DilH) and P(H]Di),
which Ss perform.

The misperception hypothesis can also be interpreted to mean that
Ss assume different data generators than E in fact uses. Different data
generators will lead to different likelihood ratios. Several experiments
support the hypothesis that Ss do sometimes assume different data generators
(Beach, 1968; Lichtenstein & Feeney, 1968; Vlek & Van der Heijden, 1969).

Support for the misaggregation hypothesis comes from a number of
experiments. The evidence consists of having Ss estimate both likelihood
ratios and posterior odds (or probabilities), and then showing that a Bayesian
aggregation of the estimated likelihood ratios is more optimal than the Ss'
own aggregations (Edwards, Phillips, Hays, & Goodman, 1968; Goldstein,
Southard & Schum, 1967; Gustafson, 1969; Kaplan & Newman, 1966; Phillips, 1966;

Schneider, 1965; Schum, Southard & Wombolt, 1969; Wheelerl). Since these

lGloria Wheeler, Personal communication, 1969,
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studies took place in settings ranging from simulations of large scale
military intelligence systems to medical diagnosis and abstract laboratory
tasks, their unanimity is impressive. Misaggregation, either alone or

in combination with misperception, would seem to constitute a good explanation
of conservatism in human inference. But does it? Certain findings have

been made in probability revision experiments which do not seem readily

explicable in terms of misaggregation or misperception.

Some Unexplained Facts

There is a whole class of probability revision experiments where
findings of conservatism are not made. Whenever Ss' estimates have been
gathered for continuous, or near continuous, hypotheses the estimates have
been very nearly optimal (Du Charme & Peterson, 1969; Edwardsz; Peterson
& Phillips, 1966). In these three experiments the Ss were faced with a
binomial data generator whose unknown proportion could range from 0.0
to 1.0. Their task was to look at a sequence of data generated by this
unknown binomial population and to estimate either the central 33%
credible interval (Du Charme & Peterson, 1969; Peterson & Phillips, 1966)
or the entire probability distribution over the 0.0 to 1.0 range (Edwards,
see footnote 2). In all three cases the Ss' estimates were either very
close to optimal or extreme. Neither the misperception nor the misaggregation
hypothesis give any insight into why Ss perform so nearly optimally in
these tasks.

No one has spelled out the misaggregation or misperception

hypotheses full enough to account for the fact that the amount of conservatism

2Ward Edwards, Personal Communication, 1969.
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n Ss' estimates varies as a function of the diagnosticity of the data
generators being used (Peterson, Du Charme & Edwards, 1968; Peterson &
Miller, 1965; Phillips & Edwards, 1966). That is, no one has explained
why conservatism varies with the theoretical value of L in the situationm.
One has to postulate that Ss misaggregate more, or misperceive more, with
diagnostic daﬁa than with undiagnostic. WNeither argument is very compelling
given the nature of the explanations. Even more basically an argument
of misaggregation or misperception could just as well lead one to expect
Ss' estimates to be too extreme as too conservative. There is nothing in
the formulation of either hypothesis which forces a prediction of con-
servatism.
The inertia effect constitutes another source of confusion in
this area. Several experiments have shown that Ss change their estimates
more readily when a datum confirms the currently favored hypothesis than
when it disconfirms this hypothesis (Geller & Pitz, 1968; Peterson &
Du Charme, 1967; Pitz, Downing & Reinhold, 1967). But the reverse of
an inertia effect has also been found (Du Charme & Peterson, 1968).
Again neither misaggregation nor misperception can explain these findings.
Finally, several experimenters have noted that when Ss' estimates
for the first datum in a sequence are separated from later estimates they
look distinctly different. In fact the revisions associated with the
first datum are very nearly optimal (Du Charme & Peterson, 1968; Peterson &
Swensson, 1968, Wheeler, see footnote 1). There seems to be no reason
why Ss should correctly perceive the first datum in a sequence and mis-

perceive later data. And obviously the first datum must be aggregated
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with the prior odds just as later data are. (It should be noted
however that the prior odds in the three experiments just mentioned
were always 1:1 so aggregation consisted simply of multiplying the L
value by 1, a not very difficult task. Prior odds other than 1:1
should lead to difficulties in aggregation.) In these several in-
stances misaggregation and misperception do not seem to be capable
of explaining all the facts. This paper presents arguments for a
hypothesis which can encompass these facts and then describes an

empirical test of the hypothesis.

Response Bias Explanation

An assumption commonly made in this area of research (Edwards,
1968) is that the numbers Ss estimate represent their subjective pro-
babilities, i.e., their true beliefs. Phillips & Edwards (1966) provide
evidence that different subjective probabilities will be inferred depending
on the type of response scale Ss use, e.g., odds or probabilities. Such
a finding is not consonant with the belief that any number a subject es~
timates is a valid indicator of subjective probability.

Ramsey recognized this problem many years ago when he said,
". . .the measurement of beliefs is almost certainly an ambiguous process
leading to a variable answer depending on how exactly the measurement
is conducted." (1964, p. 69). Indeed the same sort of criticism has
been leveled at magnitude estimation experiments--another area of research
where Ss attach numbers to their subjective feelings. Both Poulton (1968)

and Zinnes (1969) have recently discussed evidence for response biases

in magnitude estimation experiments. It seems reasonable that the same
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issue should be explored in the context of probability revision
experiments.

The misaggregation and misperception hypotheses both essentially
posit information processing errors on the part of the Ss. The
problem, however, may lie in the response system. It may be naive to
expect Ss to be so familiar with probability or odds scales that they
make nc response errors. What sort of a response bias could be hypo-
thesized to explain the aown facts? Obviously it would have to be
a bias against extreme probabilities or odds. Two points must be made
here. First, to statc that Ss display a response bias and to state
that Ss' proo. ility revisions are conservative is not at all the same
thing. The cause of coaservatism may be in the irnfurmation processing
system or in the response system, and these two systems can be experimen-
tally distinguished. Second, the term 'extreme' is a rather ambiguous
one which obviously needs oferational definition.

Given that Ss have a bias against extreme probabilities or
odds, what existing data can be accounted for? A response bias will,
of course, explain the occurrence of zcaservatism in general. Anytime
a sequence of data points toward a particular hypothesis strongly
enough, Ss' responses will appear conservative. They will be loath
to estimate numbers as extreme as those called for by the optimal model.
More particularly, a response bias of this nature can explain why Ss'
conservatism increases when they deal with diagnostic data generators.
On the average more diagnostic data geacrators will produce more diagnostic
data. These data will require more extreme responses causing Ss' conser-

vatism to increase. A similar argument explains the optimality of estimates
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for the first datum in a sequence. On the average the optimal revision
necessary after the first datum will be smaller than the revisions
required after more data in the sequence have been seen. A response
bias would thus have less chance to come into play om the first datum.

A bias against extreme numbers allows not only for the presence
of conservatism in some situations, but for the lack of it in others.
When Ss estimate creditle intervals, or entire distributions, they are
not making point (single number) estimates, and it is reasonable that
these estimates might not necessarily reflect the same biases as the
point estimates. Extreme respornses in these two kinds of situations
are quite different.

The reverse inertia effect observed by Du Charme & Peterson
(1968) was explained by them as possibly being due to the fact that Ss
revised their estimates along a curvilinear odds function. Counfirming
data moved them along the biased part of the function while disconfirming
data moved them back over the linear, unbiased part of the function. This
kind of a biased response function would lead to more conservative estimates
for confirming than for disconfirming data.

On the face of it a respomse bais looks like a reasonable alter-
native explanation for conservatism in probabilistic inferemce. According
to the present argument it can explain everything misaggregation or mis—
perception can exrlain and somewhat move in addition. How well will the
hypothesis do when subjected to an empirical test? The present exper-

iments attempt to answer that question.
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EXPERIMENT T

How can one distinguish a response bias from misaggregation or
misperception? One way is to look at inferred log likelihood ratios
(ILLR) as a function of prior odds (to obtain ILLR one subtracts the
log of S's prior odds from the log of his posterior odds). If the
response bias argument is correct, the same datum occurring when
prior odds are close to 1:1, and when they are not, should lead to
different amounts of posterior odds revision and therefore, to different
ILLRs. Since the level of the prior odds is not an operative factor
in either misperception or misaggregation, they predict no differences
in the ILLRs. Accordingly, the first experiment presented Ss with two
hypotheses and manipulated sequences of data bearing on these hypotheses
so that the same data occurred at both high and low prior odds.

There are two ways that prior odds can be manipulated: they
can be set at any desired level by the E before any data are sampled,
and they can be changed by sequences of data. In the first half of
the experiment the initial odds were always set at 1:1 and prior odds
were manipulated by the use of hand picked sequences of data. 1In the
second half of the experiment prior odds were set at various levels by
E and then changed by samples of data. The question of interest was
whehter this variable would have any effect on Ss' response functions.
Are the two kinds of prior odds equivalent?

Although the response bias hypothesis predicts a reverse inertia

effect, it also predicts that no 'primacy' effect should be found. A
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primacy effect is described by Peterson & Du Charme (1967) as an over-
reaction to early data in a sequence. Under a primacy effect Ss given
a sequence of data pointing first toward one hypothesis and then toward
another will be overinfluenced by the early data and end up with too
much probability assigned to the first hypothesis. The response bias
hypothesis predicts that Ss will simply move up and down their response
functions and be neither more nor less influenced by early data. They
should exhibit no frimacy effect., To test this prediction, one sequence
was included which reached odds of 100:1 in favor of one hypothesis, and
then returned to odds of 1:1.

Finally, the response bias hypothesis also predicts that revisions
based on Trial 1, or single datum trials, will not be optimal if the
datum is so diagnostic that it forces § to respond on the biased part of
his response function. To test this prediction, some very diagnostic

single datum trials were included.

Method

Stimuli. The experiment used two normal distributions as data
generators: the heights of United States men and women. These are the
same data generators used by Du Charme & Peterson (1968) except that the
standard deviations of the two populations were here assumed to be equal
(the value used was 2.64 which is midway between the two reported in
Du Charme & Peterson). The mean height for the male population was 68.2
inches and for the female 63.0 inches. For the first part of the exper-
iment where the E-set prior odds were always 1:1, E made up 12 sequences

to test the response bias hypothesis. The make up of these sequences
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along with the response bias predictions derived for them can be
seen in Table 1. The table identifies each sequence, gives its length
and special characteristics, and then describes the response bias pre-
diction. Comparisons are made between sequences with the same identifying
number. For instance, for sequences 1A and 1B, which differ only in
the diagnostic impact of their first datum the response bias hypothesis
predicts different amounts of posterior odds revision on Trials 2 and
3 and therefore the difference in ILLRs shown in the table.

These sequences are not very representative of what one would
expect from a truly random sampling process. To prevent Ss from becoming
aware of this the sampling distribution was made representative by the
addition of filler sequences. Three aspects of the sampling distribution
were controlled with the aid of the filler sequences. For each trial
across sequences (1) the expected value of the cumulative log likelihood
ratio (CLLR) was maintained, (2) 667 of the CLLRs were kept within + 1
standard deviation of the expected CLLR, and (3) the correct proportion
of data items (about 20%) had Ls smaller than 1.0 with reference to the
currently favored hypothesis. (Even though the male population is being
sampled, about 20% of the time a height will be drawn which is more
likely to have come from the female population and vice versa.) There
were a total of 40 sequences (half of them single datum sequences) from
1-7 trials long. This yielded a total of 158 trials in the first part of
the experiment.

In the second part of the experiment E set the prior odds at

2:1, 5:1, 10:1, and 100:1. At each prior odds level sequences of data




TABLE 1

Special Sequences

Sequence Characteristics Predictions
Number | Length
1A 3 Trial 1, 1=1.6 Trials 2. & 3 are exactly ILLRs for Trials 2 & 3 in 1A>
1B 3 Trial 1, L=99 the same ILLRs for same trials in 1B
2A 5 Trial 1, L=1.3 Trials 2, 3, 4, & 5 are ILLRs for Trials 2-5 in 2A>
2B 5 Trial 1, 1=99 exactly the same ILLRs for same trials in 2B
3 6 The odds go to 100:1 for one hypothesis, and No primacy effect; odds at
then back to 1:1 Trial 6 should be 1:1
LA 4 The last datum is‘;;é‘;;;;_zgrall three ILLR for Trial 4 of 4C > ILLR.for
4B 4 sequences. The prior odds before that datum Trial 4 of 4B > ILLR for Trial 4
4C 4 are: 540:1 in 4A, 100:1 din 4B, and 17:1 in of 4A
4C.
5A 4 Four data are put iﬁyégggwarrangements such The ILLR for a datum will aiwéys be
5B 4 that each datum appears on Trial 1 in one larger in that sequence in which the
5C 4 sequence, Trial 2 in another cequence, etc. datum occurs at lower prior odds.
5D 4 The final odds reach 10,000:1. There are 24 such comparisons.

€1
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from 1-4 trials in length were presented. These sequences were subjected
to the same controls as those in the first part of the experiment. On
the average, 21 trials were presented at each prior odds level for a
total of 83 trials.

Subjects. Twenty-six paid University of Michigan male students
served in groups of three, four, or five each.

Apparatus. A vertical board marked off in feet and inches in
units of 1/4 inch was used to display the sequences. Magnetic pointers
were attached to a metal strip fastened to one side of the board; each
pointer represented a sampled height. The Ss responded on devices which
featured an odds scale and a lever which moved along the scale. They
set the lever to the point they desired on the odds scale, and then wrote
those odds down. The odds scales were spaced logarithmically and went from
1:1 to 1,000,000:1 in six ranges (first range 1:1-10:1, second 10:1-100:1,
and so on). The odds scales could be rotated to whichever of the six ranges
S wanted to respond on.

Procedure. The experiment was broken up into three parts. In the
first part Ss were presented with defining samples for the two populations.
For both the second and third part of the experiment Ss revised odds es-
timates about which of the two populations had generated the random
samples of data they were observing. During the second part of the experiment
the prior odds at the beginning of each sequence were reset to 1:1., 1In part
three these set prior odds were varied.

The defining samples were made up of 100 male and 100 female
heights. The subjects were asked to make three estimates of the mean

height of each population; before seeing the sample, midway through, and
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at the end of the sample. By the end of each sample the average §
could estimate the mean quite accurately.

In the second part of the experiment Ss were instructed that E
had chosen one of the two populations by randomly drawing a poker
chip from a canvas bag. The bag contained one red chip and one blue
chip. If a red chip was drawn, the male population was sampled; if a
blue, the female population was sampled. This procedure set the prior
odds at 1:1. The Ss then observed a sequence of from 1-7 heights, and
after each height revised their odds about which population was being
sampled. The heights were cumulatively displayed throughout any given
sequence. The order of the sequences was randomized for each group.

The third part of the experiment differed from the second only
in that the prior odds were changed and the sequences were from 1-4
heights in length. Prior odds were set at 2:1, 5:1, 10:1, or 100:1
by informing Ss that the contents of the canvas bag had been changed
to two red chips and one blue, or five red and one blue, or whatever
the appropriate proportions were. The populations favored by the prior
odds and the colors of the chips were counterbalanced. Prior odds
conditions werezrandomized, and before each sequence Ss set their sliding

levers at the appropriate odds.

Results

Figure 1 plots the Ss' average response function for part two
of the experiment; it plots the median log estimated posterior odds as
a function of log Bayesian odds. Trial 1 estimates are plotted as

crosses; the dots represent estimates for Trials 2-7 and the circles




DIy

+ TRIAL |
® TRIAL 2-7

MEDIAN LOG ESTIMATED ODDS
5

| g 1 2 1 1 [} '

i 1 § .l

-6.0 -40 -20 00 2].0 40 6.0
LOG BAYESIAN ODDS

Fig. l.--ledian log estimated odds as a function of log
Bayvesian odds., Circles rerresent two deta roints at the same
coordinates,

9t



17

indicate that two data points fell on the same coordinates. A Bayesian
S would revise his odds so they moved up and down the 45° line. Clearly
the estimates of the median S are comnservative. As in an earlier ex-
periment (Du Charme & Peterson, 1968) Ss perform optimally only in the
range of + 1.0 log odds; outside that range their estimates are con-
servative. To check the representativeness of the median response function
plotted in Fig. 1, a product-moment correlation and regression slope were
calculated between the median log estimated odds and each Ss' log odds.
The average correlation was .89, and the average slope 1.13 indicating
that individual Ss are well represented by the median function.

It is important to note that the crosses representing single datum
trials (the first datum in a sequence or a sequence of length one) fall
on the same response function as the aggregated odds. This means that
Trial 1 estimates are conservative if the datum is diagnostic enough, and
that the aggregated odds are not conservative if the evidence is sufficiently
undiagnostic. Both these results support the response bias hypothesis.

Further support for the hypothesis comes from an analysis of the
special sequences used. The ILLR predictions listed in Table 1 were
tested by obtaining ILLR difference scores for each S. For instance,
one prediction in Table 1 is that the ILLR for Trial 2 in Sequence 1A
will be larger than the ILLR for Trial 2 in Sequence 1B. To test that
prediction the difference (D) between the two ILLRs was calculated.
Since the response bias hypothesis predicts not only a difference but
also the sign of the difference, the D score analysis was set up so that
the response bias hypothesis always predicted positive differences. There

were 33 D scores for each S, and the average D score across Ss was .16716.
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The 95% confidence interval around this average D score is .10636-
.22796 which does not include a difference of zero. The antilog of
this average D score indicates that the ILLRs for the sequences with
high prior odds must be multiplied by 1.47 to equal those for the low
prior odds sequences.

The response bias prediction for sequence 3, the primacy sequence,
was also borne out. The prediction was that the average estimate would
be at 1:1, and the 95% confidence interval around the mean estimate does
include this value. The mean estimate itself was 1.9:1 in favor of the
hypothesis for which the odds had reached 100:1.

Figure 2 displays the median log estimated odds for the favored
hypothesis as a function of the log Bayesian odds for the favored hypo-
thesis in part three of the experiment. The diamond shaped figures
represent estimates obtained at prior odds of 2:1, squares represent
estimates at 5:1, triangles 10:1 and circles 100:1. Open figures are
for Trial 1 and closed figures Trial 2-4. The circumscribed figures
indicate two data points at the same coordinates. Again the 45° line
represents optimal performance. What the graph shows is that the
range over which Ss revisions are optimal changes as a function of the
E-set prior odds. This range effect is especially clear in the case
of prior odds 100:1 (circles) and 10:1 (triangles). When Ss start
with prior odds of 10:1, they reviée nearly optimally up to about
100:1, starting from 100:1 they revise well up till nearly 1000:1. The
optimal range holds for both single datum and aggregated trials as it
does when prior odds are set at 1:1. If Ss are misaggregating, all the

single datum trials should be conservative. Another way to look at these
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data is to disregard the Ss'starting point and simply look at the cumu-
lative inferred log likelihood ratio (CILLR) function. Figure 3 plots
the median CILLR against the cumulative Bayesian log likelihood ratio.
The data points for all prior odds conditions appear to fall on the
same function. This function looks nonconservative out to a CLLR of

0.8 and then becomes conservative.

Discussion

How much importance should be attached to the multiplicative
difference of 1.47 between likelihood ratios inferred for revisions
at extreme versus low prior odds? Although this finding is statistically
significant, it may seem trivial. The following example will show that
it is not. Assume that we have two people who operate on the median
response function depicted in Fig. 1. We will let one person estimate
posterior odds and the other likelihood ratios which will be machine
aggregated. Further, suppose that enough data have been processed so
that the odds estimator has just reached that part of his response
function where it flattens out, i.e., about 10:1. On the average, after
two more data favoring the same hypothesis, the machine aggregated odds
of the likelihood ratio estimator will be about twice as great as those
of the odds estimator (1.472), after four data they will be five times
as great (1.474), and after six data ten times as great (1.476).
Clearly the differences are not trivial.

There are several ways of interpreting the biased functions
shown in Figs. 1, 2, and 3. The simplest explanation is that Ss are

displaying a cumulative log likelihood ratio (CLLR) bias. This can be
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seen most clearly in Figs. 1 and 3. Since the prior odds were always
1:1 for the data points plotted in Fig. 1, the cumulative log odds
and CLLR plots are identical. Both Fig. 1 and Fig. 3 show a bias
appearing in the CLLR function when CLLR reaches about 0.8. Re-
gardless of where E sets the prior odds Ss can correctly interpret
and aggregate only a certain amount of information. Once that limit has
been exceeded, whether by one datum or by many, the impact of later data
is less than it should be. This kind of a bias is neither misaggregation,
misperception, nor a simple response bias.

A slightly more complicated explanation is that Ss do indeed dis~

play an odds, or number, bias, but not a fixed one. The bias is omne
against moving too far from the E~set prior odds whatever they are.
The Ss shift their biased response function so that it is always centered
on the E-set prior odds. Thus if E says the prior odds are 1:1 then 10:1
is an extreme estimate; if he says they are 100:1 then 1000:1 is extreme.
It is as though the E-set prior odds provide a stable point from which Ss
will willingly revise their odds. They are more reluctant to move toward
extremeness from prior odds resulting from their own, perhaps fallacious,
aggregation.

The misaggregation hypothesis can also be twisted to fit the
data by tacking on the assumption that sometimes Ss aggregate correctly
and sometimes they don't. The 'sometimes they don't' can be defined as
anytime the CLLR exceeds 0.8 or anytime the cumulative odds exceed the
E-set priors by a factor of about 10. Regardless of which way it is
stated, the misaggregation hypothesis is clearly less adequate than it

once appeared. It is not the number of data to be aggregated that causes
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the problem but the amount of revision necessitated by the data. As
for the other two interpretations, a certain intuitive appeal and some
post experiment questioning of the Ss lead to the tentative conclusion
that the odds bias explanation is the correct onme.

Regardless of how the biased function is to be interpreted, the
important fact is that it is there. Something which can be interpreted
as a response bias exists, but how general is it? For instance, will
the same response function be obtained if different data generators
are used? In particular, does the form of the bias depend in any way
on the familiarity most people undoubtedly have with height distributions?
An equally important question concerns the effect of expected diagnosticity
on the response function. Are Ss' response biases affected by the size
of the numbers they expect to estimate? Experiment II sought to answer

these questions.

EXPERIMENT IT

In the previous experiment the expected log likelihood ratio
(ELLR) of a random observation was .86923. This corresponds to a
likelihood ratio of 7.4/1 which is also the likelihood ratio of an
observation at the mean of either distribution. The ELLR and the like-
lihood ratio of an observation at the mean will be the same whenever
two normal distributions with equal variances are used as data generators.
The ELLR of a random observation depends on the distance between the means
of the distributions and on their variances. This is exactly the relation-
ship expressed by d'(d' = 1 - Y2 ) 50 it can be used as a convenient

o}
measure of expected diagnosticity. For the previous experiment d' was
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equal to 2.0. If Ss' response functions represent a number bias then it
is possible that the bias may change as a function of the numbers they
expect to estimate. This hypothesis was tested by varying d' in Exp. II.
Three values of d' were used--1.0, 2.0, and 2.77.

There were two other goals for Exp. II. One of them was to see
if Ss would perceive two data generators with large mean separation and
large variances as more diagnostic then two with small mean separation
and small variances. It can be argued that the mean of a distribution is
a much more readily inferred quantity than the variance. For that reason
Ss might perceive mean separation as a more powerful determinant of
diagnosticity. To the extent that they do so d' will not be an adequate
measure of diagnosticity. Accordingly two conditions were run in which d'
was set at 2.0; in one condition the mean separation and variances were
the same as in Experiment I (except that the measurements were in cen-
timeters), in the other condition the means were closer together and the
variances were correspondingly smaller.

The final goal was to examine the effect of unfamiliar data
generators on the response function. The normal distributions used
as data generators in this experiment were not heights of men and women
but lengths (measured in centimeters) of fictitious species of fish.
Since the species were fictitious the data generators were clearly un-
familiar to the Ss. The purposes of the experiment then were to look
at the effects of data generator unfamiliarity and diagnosticity on
the response function, and to see if two different ways arriving at the

same d' value would appear equivalent to Ss.
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Method

Stimuli. Four different pairs of normal distributions were used
as data generators. Each pair represented one of the d' conditions. The
distributions were of the lengths of fictitious species of fish; each
species was identified only by an arbitrary letter of the alphabet.
Table 2 lists the relevant characteristics of each pair of distributions.
Sequences of from 1-5 data were generated for each pair of species. There

were more long sequences in the d' = 1.0 condition and more short ones in

TABLE 2

Distribution Characteristics

Distribution Mean Standard 4’ L of an observation
in cm. deviation at the mean
A 32.5 3.25 2.0 7.4
B 26 3.25
C 44 3.25 2.76 46.3
D 35 3.25
E | 56.5 6.5 1.0 1.6
F 50 6.5
G 73 6.5 2.0 7.4
H 60 6.5
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the d' = 2.76 condition, but for each condition Ss saw 50 data. Relevant
aspects of the sampling distribution across sequences were controlled
here as they were in Exp. I.

Subjects. Twenty-nine paid University of Michigan male under-
graduates served as Ss in groups of three, four, or five. There were
seven groups. |

Apparatus. The same board and magnetic pointers were used as
in Exp. I, but the scale on the board was in centimeters. Four re-
movable graphs displayed histograms or frequency distributions of the
defining samples for each species pair. The Ss used the same response
levers as in Exp. L.

Procedure. The four d' conditions were presented in four different
orders with Group 1 receiving one order, and the other three orders each
being given to two groups. At the beginning of each d'condition Ss
saw two defining samples of 50 fish lengths, one sample for each species.
They made two estimates of the mean for each sample, halfway through and
again at the end. The average estimate was very accurate. After the
defining sample for each of the two species under consideration had been
given, a histogram or frequency distribution graph containing 100 samples
for each species was displayed on the board. (Since Ss were familiar
with the underlying distributions in Exp. I no such display was used there.)
The Ss were told the graphs contained the 100 samples they had seen plus
an additional 100 randomly drawn samples. They were told that although
the underlying population of lengths undoubtedly looked something like

the frequency distribution, the two were by no means the same. As an
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example, it was pointed out to the S that if no fish of one particular
length turned up in the random sample of 100, it did not follow that
there were no fish that length in the population.

The Ss were next informed that one of the two species of fish
under consideration had been chosen by tossing a fair coin. They re-
vised their odds about which species had been chosen on the basis of
randomly sampled fish lengths from that population. After they had
seen all the sequences for one species pair, the frequency distribution
graphs were removed and the entire procedure was repeated for the next

pair.

Results and Discussion

Figures 4, 5, 6 and 7 display the results of the experiment in
increasing order of d'. The figures plot the median log estimated odds
against the log Bayesian odds. As in Fig. 1 the crosses represent
Trial 1 estimates and the dots later trials. In two important respects
these response functions are very similar to the one plotted in Fig. 1.
First, single datum trials (the crosses) fall on the same function as
aggregated trials, and second, the Ss estimates appear to be Bayesian
over the + 1.0 range of log odds. Unfamiliar data generators seem to
yield the same response functions as familiar ones.

Table 3 presents the average product-moment correlation and
regression line slope between the log of each S's estimated odds and
the median estimated log odds. The correlation figures reveal that

again the median functions are representative of individual Ss.
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TABLE 3
Product-Moment Correlations (r) and
Regression Slopes (b) Between the
Log of Each S's 0dds and

the Median Log 0dds

g
Condition T b
1.0 (EF) .82 1.02
2.0 (GH) .88 1.00
2.0 (AB) 91 1.04
2.77 (CD) .92 .98

Visual inspection of Figs. 5 and 6 indicates that Ss perceived
the two conditions in which d' was 2.0 as equally diagnostic. The fact
that the two median response functions appear similar means that d'
is a useful index of diagnosticity in these tasks. In fact the response
functions in all four figures look very similar. To facilitate a
comparison of these response functions, running averages of the es-
timates for all four d' conditions are plotted in Fig. 8. (Except for
being noisier, and therefore even more difficult to untangle, a plot
of simple averages looks very much the same.) Running averages were
calculated by assigning each median log odds estimate a value of one

half itself plus one half a linear interpolation between the two es-
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timates on either side of it (the extreme ends of the d' = 2.77 function
do not appear on the figure). Clearly these functions are similar;

they are stable over extreme changes in expected diagnostic impact.

DISCUSSION

The notion that Ss' probabilistic revisions might be distorted
is not a new one (Peterson, 1968; Sanders, 1968; Schum, Goldstein,

Howell & Southard, 1967), but previously there were no data bearing
directly on the hypothesis. The combined impact of the present experiments
argues quite strongly for the presence of response biases in human odds
estimation. Neither misperception nor misaggregation can easily encompass
both the data reviewed earlier and the present data.

Not all questions have been resolved, of course. Experimental
evidence on the issue of CLLR biases vs. number biases would be most
useful. Further generalizations of the present approach with qualita-
tively different data generators, e.g., binomial or multinomial, and
with different scales, e.g., probabilities, would also be interesting.
Another line of extension would be to see if general training on the
properties of number systems, odds or probabilities, results in improved
revision performance. If the errors Ss presently make are due solely
to lack of knowledge about these number systems, one would speculate that
such training would be helpful.

More generally, if Ss do have response biases, what can be said
about future research in the probability revision area? The obvious moral
for experimenters in the area is that response biases may have a confounding

effect on the variables they are interested in manipulating. It is necessary
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to know how Ss use a particular response scale before any inferences
about the effects of other variables can be made. This suggests
that experimenters should gather information on Ss' response functions
as a basic part of any probability revision experiment.

Probably the main reason the biased nature of Ss' response func-
tions is so apparent in the present experiments is that the numbers they
were called on to estimate are quite large. When d' is 2.0, for instance,
the expected odds after a sample of six data are about 22,000:1 in favor
of the most likely hypothesis. Such high numbers are probably beyond
most people's experience with the number system. For applied work, the
present results suggest that men should not be put in situations where
they have to estimate high numbers in order to be accurate.

Edwards has suggested and tested a system where men estimate like-
lihood ratios and a computer combines them according to Bayes's
theorem (Edwards, Phillips, Hays & Goodman, 1968). The rationale for
the system was that people could not accurately process a number of data,
they could not aggregate, and therefore it was best to have a machine do
the job for them. The present results show that people can aggregate
accurately over a limited range of evidence impact so the original rationale
is weakened. The strategy is still useful, however, because it avoids the
problem of biases in most cases. The exception occurs when very diagnostic
data must be processed. Such data would require large likelihood ratio
estimates, and thus allow the possibility of biasing. But since very
diagnostic daté are precisely the kind which rarely or never occur in real

world diagnostic systems, Edwards' strategy remains a viable one.




APPENDIX

Data Points For Figures

Figure 1

Trial Median log Log Bayesian

number estimated odds odds
1 0.3010 0.2039
2 0.4771 0.4892
3 0.8495 1.0189
1 1.0000 1.9971
2 1.0000 2.2825
3 1.0570 2.8121
1 0.3010 0.1222
2 -0.4771 -0.8973
3 0.1761 0.7534
4 0.1761 0.7330
5 -0.3314 -1.0205
1 -1.0880 -1.9971
2 -1.0396 -3.0167
3 -0.7782 -1.3660
4 -0.8451 -1.3863
5 -1.0000 -3.1398
1 0.3891 0.2853
2 0.9031 1.3049
3 1.1276 1.9975
4 1.0085 1.3049
5 0.4771 0.2853
6 0.0303 0.0000
1 -0.4771 -0.6927
2 -0.8741 -1.7930
3 -1.0396 -2.7306
4 -0.9542 -1.7930
1 -0.6990 -0.7746
2 -0.6990 -1.0599
3 -0.9031 -1.9975
4 -0.7386 ~1.0599
1 -0.3010 -0.2853
2 -0.4771 ~0.3057
3 -0.8741 -1.2433
4 -0.6761 -0.3057
1 0.9031 1.5085
2 1.0396 3.5057
3 1.0207 3.7910
4 1.3495 4.8105
1 0.9031 1.9971
2 1.0966 3.5057
3 1.4375 4.5252
4 1.6215 4,8105
1 0.6990 1.0195
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.8741
L1276
.5880
.5396
.7782
.0603
.5000
.5396
.3010
.6021
.5396
.9515
.6990
.6990
.0510
.6990
.1505
.5880
.6505
.6505
.6021
.6276
.9515
.3010
.6990
.0106
.3010
.6990
.0207
.8010
.2386
.3495
L5441
.7386
.9515
.3495
.7559
.0000
.5396
L8741
. 0000
.1901
.5106
.7720
.0880
.3010
.3010
.4698
.0000
.6021
.8116
.3010
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.3049
.3020
.8105
.2853
.3049
.8166
.8105
.6927
L4897
.0194
.5297
L7121
.0194
.1824
.1631
L9372
L4248
.1783
.5239
.8094
.6927
L7129
L7324
L4859
.5863
.2789
.8086
.1824
.3261
L1614
L4843
.1770
.1965
.3456
.5280
.0365
.0560
L1564
.0128
.7535
.9359
.2815
L4639
.3203
.9765
.2039
.1222
.5297
.0792
.8890
.2634
.2853
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Trial Median log Log Bayesian

number estimated odds odds
1 ~-0.6761 -1.0195
1 1.0000 1.9971
1 -0.3495 -0.5297
1 0.0000 -0.0204
1 -0.3891 -0.4486
1 0.4771 0.4486
1 -0.7782 -1.1004
1 0.8406 1.2634
1 ~0.6990 ~0.9376
1 -0.8116 -1.5085
1 0.3891 0.3668
1 0.7386 0.8564
1 -0.8116 -1.6507

Figure 2 (negative log odds indicate sequences in which the data pointed
toward the hypothesis not favored by the prior odds)

Trial Median log Log Bayesian
Number . estimated odds for odds for the
the favored hypothesis favored hypothesis

Prior odds 2:1

1 0.6901 0.5864
2 1.1450 1.1161
1 -0.4771 -0.7185
2 -0.8741 ~-2.2270
3 -1.1901 -4.,2240
1 1.2386 2.0545
2 1.5731 3.2370
3 1.7386 4.5825
4 1.9065 5.6021
1 0.3010 0.0972
1 1.0000 1.1575
1 -0.6021 ~1.0445
1 1.2297 2.0545
1 0.8406 1.0756
1 -0.3010 -0.7185
Prior odds 5:1
1 1.0000 0.9843
2 1.3010 1.5140
1 -0.5396 -1.0545
2 -1.0000 -2.2369
3 -1.2386 -3.5825
1 1.0000 1.2287
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Trial Median log Log Bayesian
number estimated odds for odds for the
the favored hypothesis favored hypothesis
1 1.1127 1.3916
1 1.3495 1.7993
1 1.5731 2.6961
1 0.3010 0.0875

Prior odds 10:1

1 1.3010 1.2853
2 1.7386 1.8150
1 0.8741 0.7147
2 -0.7386 -1.2824
3 -1.0000 -2.7910
1 1.9031 2.7535
2 2.0207 3.9359
3 2.3010 5.2815
1 1.4710 1.4456
1 1.6990 2.0195
1 1.7386 2.1824
1 1.8891 2.5085
1 1.8406 2,0195
Prior odds 100:1
1 2.6990 2.2853
2 2.9031 2.8150
1 2.9771 3.5085
2 2.9660 4.5281
3 3.1087 4.8134
1 2.9978 3.7535
2 3.2157 4,9359
3 4.0000 6.2815
1 2.4375 2.2853
1 2.7312 2.8564
1 2.9031 3.2634
1 2.9771 3.6507

Figure 3 (negative cumulative log likelihood ratios indicate sequen -
ces in which the data pointed toward the hypothesis not favored
by the prior odds)

Trial Median CILLR for Cumulative Bayesian
number the favored hypothesis log likelihood ratio
for the favored
hypothesis

Prior odds 2:1

1 0.3891 0.2853
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Trial Median CILLR for Cumulative Bayesian
number the favored hypothesis log likelihood ratio
for the favored
hypothesis

2 0.8440 0.8150

1 -0.7782 -1.0195

2 -1,1751 -2.5280

3 -1.4911 -4.5250

1 0.9375 1.7535

2 1.2720 2.9359

3 1.4375 4.,2815

4 1.6054 5.3010

1 0.0000 -0.2039

1 0.6990 0.8564

1 -0.9031 -1.3456

1 0.9287 1.7535

1 0.5396 0.7746

1 -0.6021 ~1.0195

Prior odds 5:1

1 0.3010 0.2853
2 0.6021 0.8150
1 -1.2386 -1.7535
2 -1.6990 -2.9359
3 -1.9375 -4,2815
1 0.3010 0.5297
1 0.4137 0.6927
1 0.6505 1.1004
1 0.8741 1.9971
1 -0.3979 -0.6115
Prior odds 10:1
1 0.3010 0.2853
2 0.7386 0.8150
1 -0.1259 -0.2853
2 -1.7386 -2.2824
3 -2.0000 -3.7910
1 0.9031 1.7535
2 1.0207 2.9359
3 1.3010 4.2815
1 0.4710 0.4486
1 0.6990 1.0195
1 0.7386 1.1824
1 0.8891 1.5085
1 0.8406 1.0195

Prior odds 100:1

0.6990 .2853
0.9031 0.8150

N
o
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Trial Median CILLR for Cumulative Bayesian
number the favored hypothesis log likelihood ratio
for the favored
hypothesis

1 0.9771 1.5085
2 0.9660 2.5281
3 1.1087 2.8134
1 0.9978 1.7535
2 1.2157 2.9359
3 2.000 4.2815
1 0.4375 0.2853
1 0.7312 0.8564
1 0.9031 1.2634
1 0.9771 1.6507

Figure 4

Trial Median log Log Bayesian

number estimated odds odds
1 0.3979 0.2505
1 -0.4771 -0.2840
1 0.4771 0.2171
1 -0.6021 -0.9187
1 -0.6021 -0.3508
1 -0.4771 ~0.6848
2 -0.0414 0.0000
1 0.4771 0.6514
2 0.0000 1.2026
3 0.3010 1.5200
1 -0.0792 ~0.0501
2 0.0000 0.0000
3 -0.3010 -1.0189
1 ~0.2305 -0.1503
2 0.5315 0.9354
3 0.1761 0.0835
4 0.1761 0.0000
1 -0.4771 -0.2840
2 -0.3010 -0.3007
3 -0.3010 -0.3174
4 -0.5682 ~-0.4677
1 0.4771 0.6514
2 0.6990 1.1692
3 0.9031 1.8206
4 1.0000 2.2048
1 0.3010 0.7182
2 0.0000 0.1002
3 -0.1139 -0.0167
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0.

0

-1
-0

-1

7782

0000
7782

9542

0792

3010
8451
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Log

Log

-1
-2
-0

-1
-0

Bayesian
odds

.1358
4677
.2027
.9398
L4699
.2217
4244
.0022
.6682
L4700
.6013
.6682
L4678
4054
.0690
.5122
5144
.9821
.0690
.7349
.0044
.0066
L6726
.0067
.3430
L9465
.4120
.7350
.5345
.9376
.3385
.0756

Bayesian
odds

.0022
.0022
.8686
.0249
.3341
.8040
L4721
.6704
.9354
.1358
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Trial Median log Log Bayesian

number estimated odds odds
2 1.1761 3.6079
1 -0.4771 -0.3341
2 ~0.9542 -2.1381
1 0.2553 0.2004
2 1.0000 2.8061
3 1.3010 4.6101
1 0.2553 0.3341
2 -0.3010 -0.6681
3 -0.5441 ~1.1348
1 0.4771 0.4677
2 0.7782 1.2027
3 1.2305 3.0067
1 -0.9031 ~-1.5367
2 -1.1761 -3.2070
3 -1.4771 -4.3428
1 -0.9542 -1.0022
2 0.1761 0.6682
3 0.4771 1.4032
1 -0.6990 -0.6013
2 -0.6990 ~-0.6681
3 -0.4771 ~0.4677
4 -1.0000 ~2.4053
1 0.9031 1.0022
2 1.1761 2.4053
3 1.5052 3.4075
4 1.4771 3.8752
1 0.0931 1.0022
2 0.2041 0.6681
3 0.6990 1.9376
4 1.1761 2.9398
1 1.0000 2.7394
2 1.1761 3.0735
3 1.4771 4.4766
4 1.8129 6.1470
5 1.6021 5.6793
1 0.8062 0.7350
2 ~0.3010 -0.5345
3 -0.6990 -1.9376
4 -1.0000 -2.2717
5 -1.1761 -4.0757

Figure 7

Trial Median log Log Bayesian

number estimated odds odds

1 1.1761 1.8502
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Trial Median log Log Bayesian
number estimated odds . odds
1 ~1.1761 ~-1.8502
1 1.0000 1.6652
1 ~-1.0000 -3.5155
1 1.2305 2,7753
1 -1.1761 -2.9604
1 1.3010 3.8855
1 -1.4771 ~2.7754
2 -0.8451 -2,2203
1 1.3802 2.0353
2 1.8751 5.9208
1 ~0.7782 -0.9251
2 ~1.1761 ~3.8855
1 0.342¢4 0.7401
2 1.4150 4,8106
1 -0.1761 0.0000
2 -0.4771 -0.9251
1 1.0000 1.8502
2 1.6990 6.1058
1 ~1.0000 -1.1101
2 -1.3010 ~2.5903
1 1.3010 2.9609
2 1.4771 4,8106
1 -1.0414 -2.9609
2 -1.3010 ~4.,9957
1 -0.7782 -0.9251
2 0.4771 1.8503
1 -1.0792 -1.4802
2 =1.4771 -2.7754
3 -2.0000 -7.7711
1 0.0792 0.1850
2 1.0000 3.3304
3 1.6021 5.1806
1 -1.2305 -2.4053
2 -1.6021 -4,2555
3 -2.0000 -8.3260
4 -2.3010 -10.1762
1 -0.1761 0.0000
2 0.4771 1.1101
3 1.1761 2.9603
4 1.6990 7.2159
1 -0.7782 -0.9251
2 0.1761 0.3701
3 0.1761 0.7401
4 0.6021 1.8502
1 0.3010 0.5551
2 -0.8451 -1.6652
3 -1.3010 ~4,0705
4 -1.4624 -4,9956
5 -2.0000 -7.9560
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Figure 8 The running averages were found geometrically rather than
arithmetically. For each figure 4-7 a running average was plotted
geometrically on an overlay. The four running average plots were
then transferred to Fig. 8.
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